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Translation of Laplace Transform

PROOF The proof is immediate, since by Definition 4.1

L) = | evemfr) di = | e pte) de = Fis - a. O
0 0
If we consider s a real variable, then the graph of F(s — a) is the graph of F(s)
hifted on the s-axis by the amount a. If a > 0, the graph of F(s) is shifted a units to
1e right, whereas if a < 0, the graph is shifted |a\ units to the left. See Figure 4.10.
For emphasis it is sometimes useful to use the symbolism

Lef(n)) = L fD} 5.

/here s — s — a means that in the Laplace transform F(s) of f() we replace the
ymbol s wherever it appears by s — a.
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Example 1 Using the First Translation Theorem
Evaluate (a) £{e’ ') (b) E{e™ cos 41).
SOLUTION The results follow from Theorems 4.1 and 4.6.
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(b) F{e™ cos 4t} = F{cos 4t} s D __ §+2
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Example) P { 25+5 }
(5= 3¢

25 +5 2 11

(s~3)2_s—3+(s—3)2 @

and gf”{ £ }—255-1{ : ]+ 11551[ I } (3)
(s — 3)* s—3 (s —3)

Now 1/(s — 3)* is F(s) = 1/s* shifted 3 units to the right. Since £~ {1/s*} =1, it
follows from (1) that
] = g0
F—5—3

i)
(s — 3) s
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Finally, (3) 1s




Example 3 TInitial-Value Problem
Solve y" —6y" + 9y =7¢", y0)=2, y(0)=6.

SOLUTION Before transforming the DE note that its right-hand side is similar
to the function in part (a) of Example 1. We use Theorem 4.5, the mltlal condi-
tions, simplify, and then solve for Y(s) = #{f(1)}: '

L'} - 62y} + 9Ly} = L fe¥)

2
(s —3)°

s°¥(s) = sy(0) — y'(0) = 6[s¥(s) — y(O)] + 9¥(s) =

(s*—65s+DY(5)=25+5 +

(s =3y

(s=3P¥()=2s+5+
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(s - 3)
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Y(s) = 25+5 i -
(s—3F  (s-3Y
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Thus Wo=24 {SWS}JALSE {(3_3)2}4—4!@%’ {(3—3)5]'

From the inverse form (1) of Theorem 4.6, the last two terms are

g—l{ 1 4T ] — f4€3r
8~ F—=s5-3

Y(s)=

}—rei’“' and &?‘l{—é
§—>5—3 AN

: T
and so (8) is y(f) = 2¢” + 11te™ + T 1




Example 4 An Initial-Value Problem
Solve y" +4y" + 6y =1+ ¢, vy =0, y'(0)=0.
SOLUTION Zy"} +4Z{y'} + 6%y} = L1} + Fle)

s*Y(5) — sy(0) — ¥'(0) + 4[sY(s) — y(0)] + 6Y(s) = l + L

s s+1
25+ 1
(2 +4s + 6)¥(s) = =
skt 1)
25+ 1
Y(s) = 5+

s(s+ (s> +4s+6)




Since the quadratic term in the denominator"-’does not factor into real linear
factors, the partial fraction decomposition for ¥(s) is found to be
1/6 /85 e/ 4 15/3

Yls)= + — :
) s s+1 £+4s5+6

Moreover, in preparation for taking the inverse transform, we have already
manipulated the last term into the necessary form in part (b) of Example 2. So in
view of the results in (6) and (7) we have the solution
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==l = lep- : —ehgect L ol
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L He™ F(s)} =f(t— a)WU(t — a).
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PROOF By the additive interval property of integrals, ]:; e f(t—a)i(t-a) dt
can be written as two integrals:

(¥

Hft—a)lU(t-a)) = j et —a)U(t — a) dr + Fe‘-“f(z - a)WU(t - a) dt

e e — v ———
zerofor0<t<g one fortr=za

= fe“"j“(f - a) dt.

Now if we let v =t — a, dv = dt in the last integral, then

;‘;e{f(t =5 a)%(f = a)} — jme—-'?(“-l- a'f)(‘(vJ dv

=g f Me‘““f(v) dv=e*L{f(1)}. J
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Example 6 Using Formula (15)

Evaluate (a) 3,9"1{ : iﬁl 3"25}" (b) &£ ‘1{ Slj- 5 e"“"z}.

SOLUTION (a) With the identifications a =2, F(s) = 1/(s — 4), £ {F(s)} = ¢*,
we have from (15)

g—l { 1 e—zs} s e4(r—2)o‘g£(f_ 2)
(b) With a = 7112, F(s) = s/(s> + 9), L7 {F(s)} = cos 3¢, (15) yields

3.?‘1{ 5 - e‘m} = COS 3(;‘ — E)%(f — E).
s+ 9 2 2

The last expression can be simplified somewhat using the addition formula for the
cosine. Verify that the result is the same as —sin 3t Ut — 7/2). =l




Example 7 Second Translation Theorem—Alternative Form

Evaluate #{sin tU(t— 7n)}.

SOLUTION With g(r) =sin ¢, a = «, then g(t + %) = sin (¢ + ) = —cos ¢ by the
addition formula for the sine function. Hence by (16),

S

- e O
s+ 1

Plsin tU(r — n)} =—e™Fcost}=—



Example 8 An Initial-Value Problem

Selvey t-v="1(r). y(O)=3, whete [(f)= [

SOLUTION The function f can be written as f(¢) = 3 sin t9(¢ — ©) and so by
linearity, the results of Example 7, and the usual partial fractions, we have

L'+ Hy) =3F sin tU( — n)}

0, 0Lt<m,
3sint, t=7.

—7T5

sY(s) =3O+ ¥(s) =3 5 e
el
s+ DY) =5— —> e
sc+1
5 3 1 | s
Y(s) = = = ke et 17
) s+1 2[ S T R } &)

Now proceeding as we did in Example 6, it follows from (15) with a = 7 that the
inverses of the terms in the bracket are
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= —— | = 4 4 e B 17
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Now proceeding as we did in Example 6, it follows from (15) with a = 7 that the
inverses of the terms in the bracket are

o { - e”“} = e Pt — 1), S { l e"”] = sin (t — ) U(t — 7),
i s s+ 1
and L { 5 4 e"“‘] =cos (t — m)U(t — 7).
5+

Thus the inverse of (17) is

y(t) =5e" + % e =P (t — 7m) = % sin(t — m)U(t — &) — % cos(t — mU(t — 7)

=5e’ + —2-.— e""P tgint+ cos 7 Ut — m) ¢ trigonometric identities

L HSe O0<t<nm

{56“’+%e““’+% sin £ + 3% cos f, i= 7 (13)

With the aid of a graphing utility we get the graph of (18), shown in Figure
4.16. : o
<t



Example 9 A Boundary-Value Problem

A beam of length L is embedded at both ends as shown in Figure 4.17. Find the
deflection of the beam when the load is given by

2 2
W) =40 (1 Lx)’ Oicia= L2

0, L2« e
w(x)
/ 7
wall / YY l* /
<% T =
Xy 7




SOLUTION Recall that, since the beam is embedded at both ends, the bound-
ary conditions are y(0) = 0, ¥y'(0) = 0, y(L) = 0, y'(L) = 0. Now by (10) we can
express w(x) in terms of the unit step function:

w(x) = wo(l = ix) ~ wo(l -%x)%(x — g—)
)
T Y 2 2

Transforming (9) with respect to the variable x gives

3 o o " 2 i 1}2 1 1 & i
EI*Y(s) — $9(0) — s2/(0) — s"(0) — y" @)y = =20 | 2 _ L 1 v
L& St W

2w _L_Q i _lﬁ s le—iﬁﬂ ]
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or 5*Y(s) — sy7(0) — y"(0) =




If we let ¢, = y”(0) and ¢, = y"(0), then

Cq Cs 2W{]
Wl sttt 5 — e
§ s Bl s 5 s

LN T e_m]’

and consequently
S g2 0 )3t
WA= o {53}+ T {sf*

+_2”h 1J2;24{fi}__j;£€4 ! +_j;534,§;€4yz
EIL| 4! J 8
S S Ef—f%—(x—é—) Ql(x—é) :
2 6 ' 60EIL 2 2
Applying the conditions y(L) = 0 and y’(L) = 0 to the last result yields a system of

equations for ¢, and ¢;:

[P i s dOwiT e

Crr + Ca
2 6 1920EI

2 3
C]L o L m SSWOL =i
2 960E]

Solving, we find ¢, = 23w, L*/960EI and ¢, = 9w, L/40EIL Thus the deflection is

given by
2 ¥ 3
, SR b AL g e M {SL = (x - -’i) ou(x = Eﬂ 2
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